Lower bounds for designs in symmetric spaces
نویسندگان
چکیده
A design is a finite set of points in a space on which every ”simple” functions averages to its global mean. Illustrative examples of simple functions are low-degree polynomials on the Euclidean sphere or on the Hamming cube. We prove lower bounds on designs in spaces with a large group of symmetries. These spaces include globally symmetric Riemannian spaces (of any rank) and commutative association schemes with 1-transitive group of symmetries. Our bounds are, in general, implicit, relying on estimates on the spectral behavior of certain symmetry-invariant linear operators. They reduce to the first linear programming bound for designs in globally symmetric Riemannian spaces of rank-1 or in distance regular graphs. The proofs are different though, coming from viewpoint of abstract harmonic analysis in symmetric spaces. As a dividend we obtain the following geometric fact: a design is large because a union of ”spherical caps” around its points ”covers” the whole space.
منابع مشابه
On Lower Bounds on the Size of Designs in Compact Symmetric Spaces of Rank 1
The concept of t-designs in compact symmetric spaces of rank 1 is a generalization of the theory of classical t-designs. In this paper we obtain new lower bounds on the cardinality of designs in projective compact symmetric spaces of rank 1. With one exception our bounds are the first improvements of the classical bounds by more than one. We use the linear programming technique and follow the a...
متن کاملUpper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 17 شماره
صفحات -
تاریخ انتشار 2010